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We have made a hard-edged ICOOL simulation of Valeri Balbekov’s four-sided cooling 
ring, which was originally designed as a possible test configuration for the MUCOOL 
experiment.  We find a cooling merit factor of 103 after 15 turns. 
 
 
 
1.  Introduction 
 
Valeri Balbekov was one of the earliest proponents for using ring coolers [1]. The four-
sided cooling ring [2] presented at PAC2001 was a particularly elegant solution, which  
led to the investigation of many alternative ring designs. The layout of the Balbekov ring 
is shown in Fig. 1. 

 
 
Figure 1:  Layout of Balbekov ring [2]. 
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The long straight section has a large solenoid surrounding RF cavities and a liquid 
hydrogen absorber for transverse cooling. The beam is bent in the short straight section 
by two gradient dipoles. In the center of the short straight section are two short solenoids 
with opposite field direction and a LiH wedge for emittance exchange. 
 
 
2.  Problem geometry 
 
The model consists of a 4-sided ring with ~37 m circumference. Each quadrant of the 
ring is identical. The geometrical aspects of the elements in each quadrant are 
summarized in the following table. 
 
  Table 1: Geometry of ring quadrant 

element radius 
[m] 

length [m] Σ length [m] 

drift 0.60 0.0720 0.072 0 
RF1-8 0.57 8 × 0.32 2.632 0 
drift 0.60 0.04 2.672 0 
LH2 0.31 1.334 4.006 0 
drift 0.60 0.04 4.046 0 
RF9-16 0.57 8 × 0.32 6.606 0 
drift 0.60 0.0720 6.678 0 
dipole 0.52 0.408 4 7.086 4 
drift + wedge 0.29 1.7439 8.830 3 
dipole 0.52 0.408 4 9.238 7 

 
 
LH2 refers to a cylindrical liquid hydrogen absorber. 
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3.  Magnetic field modeling  
 
The magnetic elements in the ring consist of solenoids and gradient dipoles. For the 
simulations shown in this report the fields of both the solenoids and dipoles end in a hard 
edge longitudinally. 
 
3.1  Combined function dipole 
 
The radius of the particle in the LAB coordinate system is 
 
   r = ρ + x 
 
where ρ is the radius of curvature and the transverse coordinates (x,y) are measured 
relative to the reference trajectory. On the magnet midplane the vertical field is 

 
 
and the horizontal field vanishes. Define 
 
   w = y / r 
 
Off the midplane the field is given is given by the expansions [3] 
 

 
and 

 
The field is uniform along the longitudinal direction and ends abruptly at the hard edge. 
 
3.2  Solenoid fringe fields 
 
The effect of the fringe fields at the ends of the solenoids are approximated by transverse 
momentum kicks that are proportional to the radius of the particle. The symmetry of the 
kick orientation repeats twice each turn. Starting with a long straight section we used the 
series {- +  - -  + -  + +}. 
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3.3  Long solenoid  
 
The solenoids are modeled with current sheets. The parameters for the sheets used to 
model the long solenoid are given in the table. 
 
  Table 2: Current sheets for the long solenoid 

# zo  [m] Length [m] Radius [m] J [A/mm2] 
1 -6.678 6.678 0.8275 43.79 
2 -4.699 2.72 0.8625 43.79 
3 -4.699 2.72 0.8975 43.79 
4 0. 6.678 0.8275 43.79 
5 1.979 2.72 0.8625 43.79 
6 1.979 2.72 0.8975 43.79 
7 6.678 6.678 0.8275 43.79 
8 8.657 2.72 0.8625 43.79 
9 8.657 2.72 0.8975 43.79 

 
In the table the columns give the starting axial location of the sheet, the axial length of 
the sheet, the radius of the sheet and the current density in an equivalent current block 
with finite radial extent. In order to obtain the current gradient (A/m) required by the 
current sheets, it is necessary to normalize the current densities by an assumed 3.5 cm 
radial extent for the current blocks. The sheets 4-6 correspond to the actual current 
distribution in the ring. The preceding (1-3) and following (7-9) sheets produce the 
magnetic mirror ends assumed in the model. The resulting axial field component on-axis 
is shown in Fig. 2. The field starts at 2.08 T at the magnetic mirror and rises to 4.93 T at 
the center of the solenoid. 
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Figure 2: Axial magnetic field distribution for the long solenoid. 
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3.4  Field flip solenoids 
 
The axial field changes direction between two short solenoids in the short straight 
section. The parameters for the sheets used to model this region are given in the table. 
 
  Table 3:  Current sheets for the short straight section 

# zo  [m] Length [m] Radius [m] J [A/mm2] 
1 -1.7439 0.4656 0.2972 -81.51 
2 -1.2783 0.3816 0.2972 -203.78 
3 -0.8472 0.3816 0.2972 203.78 
4 -0.4656 0.4656 0.2972 81.51 
5 0. 0.4656 0.2972 81.51 
6 0.4656 0.3816 0.2972 203.78 
7 0.8967 0.3816 0.2972 -203.78 
8 1.2783 0.4656 0.2972 -81.51 
9 1.7439 0.4656 0.2972 -81.51 
10 2.2095 0.3816 0.2972 -203.78 
11 2.6406 0.3816 0.2972 203.78 
12 3.0222 0.4656 0.2972 81.51 

 
Again only sheets 5-8 correspond to the physical coils, while the other sheets give the 
required magnetic mirrors at the ends. The axial field on-axis for the short straight section 
is shown in Fig. 3. The field starts at 2.08 T at the magnetic mirror and rises to 2.75 T and 
then falls to 0 at the center of the solenoid. 
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Figure 3: Axial magnetic field distribution for the short straight section.
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4.  Basic parameters for the ICOOL model 
 
The ring contains 8 combined function dipoles with [2] 
 
 BD = 1.453 T 
 ρ = 0.52 m 
 n = 1/2 (field index) 
 
The dipole parameters fix the central momentum po and related quantities 
 
 po = 0.226 511 190 GeV/c 
 
The bend angle of 45o fixes the arclength in the dipole  
 
 sD =  0.408 4 m  
 
The revolution time around the ring depends on the detailed momentum profile of the 
reference particle. Starting at po the momentum will increase in the RF cavities in front of 
the hydrogen absorber, fall precipitously in the absorber, and then increase again back to 
po in the RF cavities after the absorber. However, we expect the average momentum over 
the whole path to be close to po . In that case the revolution time is  
 
 TREV ≈ 136.020 ns 
 
For a harmonic number 
 
 h = 28 
 
the corresponding RF period and frequency is 
 

TRF = 4.857 85 ns. 
 fRF = 205.852 MHz 
  
We took the length of liquid hydrogen absorber [2]  
 
 LABS = 1.334 m 
 
The particles lose 40.27 MeV in the absorber. 
 
The RF cavities are modeled as cylindrical pillbox cavities with Bessel function EZ and 
Bφ field components. The cavity fields vary sinusoidally in time and have a length and 
peak on-axis gradient 
 
 LCAV = 0.32 m 
 G = 15 MV/m 
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We checked the first-order dispersion suppression in the design by looking at a simplified 
system consisting only of the dipole-short solenoid-dipole combination [4]. For the first 
part of the study the wedge at the center of the solenoid was removed. On-axis particles 
were launched with momenta near po. We adjusted the overall current density scale factor 
in order to minimize the transverse beam position and momentum at the end of the 
simplified system. This optimization was not straightforward since for some solutions the 
particles were subsequently lost in multiturn tracking. The dynamics of the ring are 
strongly influenced by the exact design of this complicated field flip plus wedge region. 
The chosen solution produced a peak field of 2.75 T and a field at the solenoid hard edge 
of 2.08 T, in rough agreement with Fig. 3 in ref.  [2].  Adjusting the two coil current 
densities in the field flipping short solenoid independently did not improve the results. 
The momentum region over which the dispersion-induced displacement is small is ~10 
MeV, limited mainly by the dispersion in x.  
 
We also used the dipole-short solenoid-dipole combination to check for proper operation 
of the LiH wedge. An on-axis beam was used with momentum spread σPZ = 18 MeV/c. 
The beam is dispersed in x by the first dipole. The solenoidal field between the dipole 
and the wedge rotates the dispersion so that it lies mainly in the y direction going into the 
wedge. The wedge properties were  
 
 αW = 25.4o 

 width = 29 cm 
 thickness = 13.07 cm 
 
The wedge is oriented vertically with the apex touching the beam axis. We found that, as 
desired, the average energy and the energy spread are reduced in one half of the vertical 
dimension and left alone in the other half. 
 
A discussion of the design considerations for this ring, together with the theoretical lattice 
functions and resonance behavior can be found in a recent paper by Balbekov [5]. Some 
further details about the longitudinal dynamics of the ring are given in the appendix of 
this report. 
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5.  Reference particle 
 
ICOOL uses an internal reference particle to set the absolute phases of the RF cavities. 
The algorithm chosen here (phase model 3) starts with an on-axis particle with 
momentum po and all stochastic processes turned off. It is assumed that the reference 
particle moves with constant momentum po. The time and axial position are simply 
updated for non-cavity regions. For RF cavity regions the time the reference particle 
reaches the center of the cavity is stored and used to define the zero-crossing time of the 
cavity electric field. Since the harmonic number is an exact integer, this model for the 
reference particle essentially gives a timing pulse that periodically drives the sinusoidal 
fields in the RF cavities. 
 
Once the absolute cavity phases have been fixed we can look at tracking real particles. 
We assume that the cavities in the other three quadrants of the ring have the same 
absolute phase as the corresponding cavity in the first quadrant. We start with a particle 
with momentum po. In order for the particle to get accelerated in the cavities, we shift its 
launch time by -0.473 ns relative to the reference particle. The particle phase crossing the 
cavities is then just right to end up with momentum po after leaving the 16th RF cavity. 
This corresponds to a synchronous phase of 35.0o from zero-crossing. 
 
However, there is a time shift between the real particle and the reference particle when 
entering the first dipole. This means the real particle will enter the first cavity in the next 
quadrant at a different phase than it entered the first cavity in the first quadrant. As a 
result all the real particles undergo synchrotron oscillations in longitudinal phase space. 
This time difference comes about because the real particle does not have the same 
momentum profile through the cavities and absorbers that was assumed for the reference 
particle. However, this algorithm gives a phase stable solution. This can be seen in Fig. 4, 
which shows the longitudinal momentum of the real particle as a function of distance. 
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Figure 4: Axial momentum of a real reference particle as a function of distance. 
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6.   Initial beam conditions 
 
The initial beam distributions given in Table 4 differ from those given in ref. [2] because 
we started the simulation at a location between one of the dipoles and a long straight 
section, whereas the Balbekov simulation began in the middle of the long straight section. 
 
The initial beam was given a transverse amplitude-momentum correlation according to 
the following prescription [5]. Let us define the square of the Balbekov amplitude 
 

 
The quantities {r, pT} are randomly chosen to determine the initial value of this 
amplitude. The quantity B is the value of the solenoidal magnetic field at the launch 
location for the particles. Once AB is known, we set the total energy of the particle 
according to 
 

 
The quantity EREF is fixed at 250 MeV, as in ref. [2], and ∆E was selected randomly. 
Fig.5 shows the resulting correlation of total energy versus the Balbekov amplitude when 
∆E=0.  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.25

0.26

0.27

0.28

0.29

0.30

E
  [

 G
eV

 ]

Balbekov  amplitude

 
Figure 5: Transverse amplitude-momentum correlation of initial beam particles. 
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7.  Full beam simulations 
 
We have simulated propagation through 15 complete turns, including all stochastic 
effects. The widths of the beam parameter distributions at the beginning and end of the 
simulation are given in Table 4. 
 
  Table 4: Initial and final beam standard deviations 

σ  Initial Final 
x mm 61.7 24.1 
y mm 63.3 23.7 
ct mm 98.8 55.3 
pX MeV/c 20.6 8.36 
pY MeV/c 20.4 7.57 
pZ MeV/c 22.1 9.85 

 
Fig. 6-8 shows the standard deviations of the beam distributions as a function of axial 
distance. 
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Figure 6:  Standard deviation of beam dimensions as a function of axial distance. 
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Figure 7:  Standard deviation of beam momenta as a function of axial distance. 
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Figure 8:  Mean of beam momenta as a function of axial distance. 



 12 

We see that the beam size is steadily reduced in all six phase space dimensions. Fig. 8 
shows that the mean momentum of the muon bunch decreases gradually as the cooling 
takes place. 
 
Fig. 9 shows the longitudinal phase space after 15 turns.  We see that the beam has been 
successfully captured in an rf bucket. 
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Figure 9:  Longitudinal phase space at end of 15 turns. 
 
Fig. 10 shows the normalized emittances computed using the program ECALC9 and 
transmission including decay as a function of distance for 15 complete turns around the 
ring.  
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Figure 10  Emittances and transmission at end of 15 turns. 
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The transverse emittance  falls monotonicly from the beginning. The longitudinal and 6D 
emittances on the other hand grow significantly in the first turn, then begin to fall steadily 
as well. The transmission also has a rapid drop in the first turn as mismatched particles 
are lost due to scraping at the transverse apertures. The emittance values at the beginning 
and end of the simulation are given quantitatively in Table 5. 
 
   Table 5: Initial and final beam emittances 

  initial final 
εT mm 12.2 1.74 
εL mm 19.9 4.44 
ε6 10-9 m3 2960 13.2 
Tr % 100 45.8 

 
The ring brings the transverse normalized emittance down to ~1.7 mm and the 
longitudinal normalized emittance down to ~4.5 mm.  
 
The merit functions [6] are shown as a function of distance in Fig. 11. 
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Figure 11   Merit factors M and Q as a function of axial distance. 
 
 
The ring gives a peak merit factor of 109 after 490 m and then decreases slightly to a 
value of 103 after 15 complete turns. If the emittances are corrected for the transverse 
amplitude-momentum correlation, this drops to 97. A simulation done without the initial 
transverse-longitudinal correlation in the beam gave a final merit factor of 51. 
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7.  Conclusions 
 
The simulation of the ring given here agrees qualitatively with the results obtained by 
Balbekov using his own code.  The predicted merit factor ~103 in ICOOL is more than 
two times better than that predicted by Balbekov. There are several possible explanations 
for this difference in simulated behavior. There are small differences in the reoptimized 
parameters used here. Perhaps more significantly the initial longitudinal momentum 
determined here is larger than the one assumed in ref. [5], which leads to a higher merit 
factor. Nevertheless there is no doubt that a ring with parameters similar to those 
assumed here would work well. The major issue lies with these assumptions. The hard-
edge  field approximations used in both simulations is clearly inadequate. The next step 
in the study of this ring must be to drop the hard-edge field approximation and reoptimize 
the ring using realistic fields, including the effects of overlapping fields from the 
solenoids and dipoles. In addition the ring design assumed here does not allow breaking 
the lattice symmetry for an injection/extraction region. Early attempts at including such a 
section led to seriously degraded cooling performance [5]. 
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Appendix:   Ring behavior for off-momentum particles 
 
Several properties of the ring can be determined from tracking particles with momentum 
unequal to po through a single turn. The compaction factor is [7] 

 

 
The transition gamma is [7] 

 
 
The slip factor is [7] 

 
We find 

αp = 1.223 10-3 
γt = 28.590 
η  = 0.177 

 
The longitudinal beta function is [8] 

 
where our synchronous phase is measured from zero-crossing. We find 
 
 βφ = 0.0181 MeV-1 
 
By observing the counter-clockwise rotation of the bunch in longitudinal phase space, we 
determined that the synchrotron wavelength is approximately the same as the 
circumference of the ring (~37 m). 
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